Lagrange coordinates for the Einstein-Euler equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Reduced Euler-Lagrange Equations

Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...

متن کامل

Euler-lagrange Equations

. Consider a mechanical system consisting of N particles in R subject to some forces. Let xi ∈ R denote the position vector of the ith particle. Then all possible positions of the system are described by N -tuples (x1, . . . , xN ) ∈ (R) . The space (R) is an example of a configuration space. The time evolution of the system is described by a curve (x1(t), . . . , xN (t)) in (R) and is governed...

متن کامل

The Euler – Lagrange Equations for Nonholonomic Systems

This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conse...

متن کامل

AV-differential geometry: Euler-Lagrange equations

A general, consistent and complete framework for geometrical formulation of mechanical systems is proposed, based on certain structures on affine bundles (affgebroids) that generalize Lie algebras and Lie algebroids. This scheme covers and unifies various geometrical approaches to mechanics in the Lagrangian and Hamiltonian pictures, including time-dependent lagrangians and hamiltonians. In our...

متن کامل

Euler–Lagrange equations for the spectral element shallow water system

We present the derivation of the discrete Euler–Lagrange equations for an inverse spectral element ocean model based on the shallow water equations. We show that the discrete Euler–Lagrange equations can be obtained from the continuous Euler–Lagrange equations by using a correct combination of the weak and the strong forms of derivatives in the Galerkin integrals, and by changing the order with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2012

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.85.044019